Distinct NF-kappaB regulation by shear stress through Ras-dependent IkappaBalpha oscillations: real-time analysis of flow-mediated activation in live cells.
نویسندگان
چکیده
NF-kappaB, a transcription factor central to inflammatory regulation during development of atherosclerosis, is activated by soluble mediators and through biomechanical inputs such as flow-mediated shear- stress. To investigate the molecular mechanisms underlying shear stress mediated signal transduction in vascular cells we have developed a system that applies flow-mediated shear stress in a controlled manner, while inserted in a confocal microscope. In combination with GFP-based methods, this allows continuous monitoring of flow induced signal transduction in live cells and in real time. Flow-mediated shear stress, induced using the system, caused a successive increase in NF-kappaB-regulated gene activation. Experiments assessing the mechanisms underlying the NF-kappaB induced activity showed time and flow rate dependent effects on the inhibitor, IkappaBalpha, involving nuclear translocation characterized by a biphasic or cyclic pattern. The effect was observed in both endothelial- and smooth muscle cells, demonstrated to impact noncomplexed IkappaBalpha, and to involve mechanisms distinct from those mediating cytokine signals. In contrast, effects on the NF-kappaB subunit relA were similar to those observed during cytokine stimulation. Further experiments showed the flow induced inter-compartmental transport of IkappaBalpha to be regulated through the Ras GTP-ase, demonstrating a pronounced reduction in the effects following blocking of Ras activity. These studies show that flow-mediated shear stress, regulated by the Ras GTP-ase, uses distinct mechanisms of NF-kappaB control at the molecular level. The oscillatory pattern, reflecting inter-compartmental translocation of IkappaBetaalpha, is likely to have fundamental impact on pathway regulation and on development of shear stress-induced distinct vascular cell phenotypes.
منابع مشابه
Distinct NF- B Regulation by Shear Stress Through Ras-Dependent I B Oscillations Real-Time Analysis of Flow-Mediated Activation in Live Cells
NFB, a transcription factor central to inflammatory regulation during development of atherosclerosis, is activated by soluble mediators and through biomechanical inputs such as flow-mediated shearstress. To investigate the molecular mechanisms underlying shear stress mediated signal transduction in vascular cells we have developed a system that applies flow-mediated shear stress in a controlled...
متن کاملTumor necrosis factor-alpha activates the human prolactin gene promoter via nuclear factor-kappaB signaling.
Pituitary function has been shown to be regulated by an increasing number of intrapituitary factors, including cytokines. Here we show that the important cytokine TNF-alpha activates prolactin gene transcription in pituitary GH3 cells stably expressing luciferase under control of 5 kb of the human prolactin promoter. Similar regulation of the endogenous rat prolactin gene by TNF-alpha in GH3 ce...
متن کاملIκBɛ provides negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene expression
NF-kappaB signaling is known to be critically regulated by the NF-kappaB-inducible inhibitor protein IkappaBalpha. The resulting negative feedback has been shown to produce a propensity for oscillations in NF-kappaB activity. We report integrated experimental and computational studies that demonstrate that another IkappaB isoform, IkappaBepsilon, also provides negative feedback on NF-kappaB act...
متن کاملA20 protects from CD40-CD40 ligand-mediated endothelial cell activation and apoptosis.
BACKGROUND CD40/CD40 ligand (CD40L) signaling is a potent activator of endothelial cells (ECs) and promoter of atherosclerosis. In this study, we investigate whether A20 (a gene we have shown to be antiinflammatory and antiapoptotic in ECs) can protect from CD40/CD40L-mediated EC activation. METHODS AND RESULTS Overexpression of CD40, in a transient transfection system, activates the transcri...
متن کاملBradykinin B2 receptor mediates NF-kappaB activation and cyclooxygenase-2 expression via the Ras/Raf-1/ERK pathway in human airway epithelial cells.
In this study, we investigated the signaling pathways involved in bradykinin (BK)-induced NF-kappaB activation and cyclooxygenase-2 (COX-2) expression in human airway epithelial cells (A549). BK caused concentration- and time-dependent increase in COX-2 expression, which was attenuated by a selective B2 BK receptor antagonist (HOE140), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 96 6 شماره
صفحات -
تاریخ انتشار 2005